Tensorflow keras analysis
[TOC]
tensorflow keras analysis
code
from keras.models import Sequential
model = Sequential()
from keras.layers import Dense
model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True))
# x_train and y_train are Numpy arrays --just like in the Scikit-Learn API.
model.fit(x_train, y_train, epochs=5, batch_size=32)
# Alternatively, you can feed batches to your model manually:
model.train_on_batch(x_batch, y_batch)
# Evaluate your performance in one line:
loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)
# Or generate predictions on new data:
classes = model.predict(x_test, batch_size=128)
Q: where is Sequential defined?
A:
From https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/models.py
from tensorflow.python.keras.engine import sequential
Sequential = sequential.Sequential # pylint: disable=invalid-name
We get the definition of Sequential class From https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/engine/sequential.py
@keras_export('keras.models.Sequential', 'keras.Sequential')
class Sequential(training.Model):
...
def add(self, layer):
...
...
batch_shape, dtype = training_utils.get_input_shape_and_dtype(layer)
if batch_shape:
# Instantiate an input layer.
x = input_layer.Input(
batch_shape=batch_shape, dtype=dtype, name=layer.name + '_input')
# This will build the current layer
# and create the node connecting the current layer
# to the input layer we just created.
layer(x)
set_inputs = True
Q: where is compile()?
from tensorflow.python.keras.engine import training
we find the definition of Model class from file:https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/engine/training.py
- 上一篇 Visionworks openvx
- 下一篇 X3d